
zz

KiJ7rTecncaI)ýicumen5)39

"ISSUES AND PERSPECTIVES IN THE
VALIDATION OF TACTICAL SOFTWARE

,/ , D D C �1 RN Goss
K ~~~ F -- y eb~fwwc78

IH/

- JL. • , 10 19 .-. e ?.&

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

G41
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CALIFORNIA 92152

78 07 06$K '

S.

I I

NAVAL OCEAN SYSTEMS CENTER. BAN DIEGO, CA 92182

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

RR GAVAZZI, CAPT. USN HL BLOOD

Commander Technical Director

ADMINISTRATfIVE INFORMATION

The work was performed by the Computer Systems Architecture Branch of the
Naval Ocean Systems Center (formerly the Naval Electronics Laborator Center) under
project number F6121 2 (NELC Z29 I), program element 62766N.

Released by Under authority of
RR Eyres JH Maynard, Head
Tactical Computer Systems Command Control-Electronic Warfare
Architecture Division Systems and Technology Department

I
Ii

I
- EEL

UNCLASSIFIED
SECURITY CI.ASGIPICATION OF THIS PAGE tea 006 a,,1,.O

REPORT DOCUMENTATION PAGE READ WIPzTRMON"

LHI 'Ml+OT+ NUMBER. GOVT ACCESSION NO 2. RI, PIENTSI CATALOG NUMBlRM ,+

NOSC Technical Document 139 (TD 139) _ __

f4. TII ~ ble.. Typo OF 01EP10RT 6 PERIOD COVEsRED

ISSUES AND PERSPECTIVES IN TIlE VALIDATION OF
TACTICAL SOFTWARE;+ e, PIRRPORqMIN41 OR44h RPORT'NUMBER; +

1. AUTNO•,1(c) I "OITACT OR MANY NUM116M

RN Goss

I. PINWORMINO ORGANIZATION NAE AND A50RE86 ""- P 'EV T.PR0 , T. TASK
•. Naval Ocean Systems Center F61212 (NELC Z291)•

* San Diego, CA 92152 62766N

1". CONTROLLING OFFICE NAME AND ADDRESS Is. REPORT DATE

Naval Ocean Systems Center I February 1978 4

San Diego, CA 92152 IS- NUMBER OF PAGES
22

14. MONITONING AGENCY NAMEI AOSRES'l•SI Eifefml iWo Cemon 0lt 1 Olfl) I1 SECURITY CLASS. (&I t•dt-o7 f et

UNCLASSIFIED

SI., VNC&AeeRICATION/DOWSGRADING

If DISTRIBUTION STATEMENT (oil ths kip-r)

Approved for public release; distribution is unlimited.

17. OISTRIBUTION STATEMENT (of the abstracl entered In WIeek 20, Ii differenl Ion Repfort

IS. SUPPLEMENTARY NOTES

It. KEY WORDS (Continue on reve.s.. side U'n...naw and IEO.IItp by bWek n.umb.•)

Software engineering
Software validation and verification

a4

20. ABSTRACT (Oontinus, on r~evere ld. i Hosooeeaandm idoemtIV' bleaok M=bw)

i~T-i document presents the issues and perspectives in the validation of tactical software.

DO 147) EDITION OF f NOV as Is 0OBSOLTE OLSI
B/N 10I014 661NC LASFED9/m8 t 1 0 4.$So ISESCURITY CLASIFICAION OP T1419 PAGE (M"io IWAl fIfI

78 07 06 05`9

CONTENTS

1.0 INTRODUCTION... page 3

2.0 BACKGROUND... page 3

3.0 NECESSITY FOR SOFTWARE VERIFICATION ... 6

4.0 CORRECTNESS: TIHE FORMAL CRITERION OF QUALITY ASSURANCE ... 7

5.0 THE PROGRAM GRAPH: A UNIFYING DEVICE... 10

6.0 VALIDITY: THE FUNCTIONAL CRITERION FOR QUALITY ASSURANCE... 12

7.0 VALIDATION TOOLS... 14

8.0 SOME SPECIFIC TOOLS ... 16

A. Data Flow Analysis... 16
B. Symbolic Execution ... 16
C. Clock Probes... 17
D. Direct Code.. . 17
E. Test Generation ... 17
F. Standards Enforcement... 18
G. Accuracy Determination ... 18
H. Simulation... 18

9.0 SCOPE OF THE REQUIREMENTS... 19

10.0 SOFTWARE OR HARDWARE?... 20

11.0 REFERENCES... 22

* ',,TN3!AN for

1W. r
68M Suct'on

.....-...

1.0 INTRODUCTION

This report represents some of the results obtained under Project Z291 of the NOSC
In-House Research and Development program. The title of the project, "Command Control
Distributed System Design and Validation Processes," suggests that the task embraces two
separate efforts, and indeed this is the case. This document deals only with validation pro-
cesses; the results on system design are reported elsewhere.

The present report is accompanied by a requirements documentI which it is intended
to complement. The latter, constrained to follow a rigidly standardized format, 2 is not a
suitable medium for discussing issues that fall outside of its limited range. Many of the issues
are relevant to the present and future development of validation tools and to the way those
tools are deployed. The documentation standards2 predate the rise of software validation as
a rational discipline and are, on that account, not necessarily well planned to convey to the
software system designer the special characteristics validation tools must have vis-a-vis the
more usual software products. This report may be considered as an expansion of paragraph
2.1 of reference 1.

Another document of interest and relevance to the readers of the subject matter is
reference 3 which is concerned with furnishing a general orientation in the field of software
verification rather than with developing requirements. The principal themes of reference 3
are (i) that the activity of producing reliable software must begin with a carefully designed
and constructed programming language, especially in its data-handling capabilities, and (ii)
that testing is a multifaceted endeavor that demands special expertise and intuition. We
agree completely with both of these assessments. They cannot be too strongly emphasized,
and their implications for validation tool requirements are clear. No tool, no matter how
sophisticated, is going to be completely successful in overcoming programming problems
that stem from inept language characteristics. The best tool will be one that the quality
assurance tester can adapt to any test strategy. The last point has been a guiding principle
in writing the requirements.

This document does not duplicate reference 3, and in some milior points may take
issue with it, but there are no incompatibilities. In particular, the other references in this
report supplement those of reference 3, which, in addition, contains an extensive bibliography
on software reliability.

Some of the remarks made by the author on I July 1977 to participants in a UCLA
Extension course in Command and Control for Air Force, Army, and Navy systems, are
incorporated herein.

2.0 BACKGROUND

* * The current large general-purpose standard computer for Navy shipboard or shore
use is the AN/UYK-7, and the complementary smaller computer is the AN/UYK-20. The

Navy has hundreds of each. The standard source programming language is CMS-2, of which
CMS-2Y and CMS-2M are the respective versions for the AN/UYK-7 and the AN/UYK-20.

INOSC Technical Document 138. "Functional Description of a Validation Tool for CMS-2 Software," 1
by RN Goss, 1 February 19782Department of Defense. DoD Manual 4120.17-M. "Automated Data System Documentation Standards
Manual," pp 2-3 through 2-16, December 19723NELC Technical Note 2949,* "Software Verification. A State of the Art Report." 12 May 1975

ONELC technical notes are informal publications intended primarily for use within the Center.

3

I UN
WIN PA A(- I

Another version, the CMS-2Q, is used for the UNIVAC CP-642/CP-642B, CP-901 (1830A),
and 1218 computers, Compilers for these versions are supported by the Navy at a number of
locations.4 There is also a Universal CMS-2 Programming Language under development. 5

The functional description envisions a compiler that will be applicable to software written in
any version of the CMS-2 language authorized for use.

The problem of software reliability has been a matter of deep concern in recent years.
On the one hand, it has proved to be much more difficult to control than earlier Navy policy
planners had anticipated, and, on the other hand, it has become an increasingly critical factor
in the successful conduct of tactical operations. There is general agreement that if any kind
of permanent change for the better is to be effected, it will have to come as a result of a
top-to-bottom overhaul of the process by which the tactical software comes into being at the
same time. Present investments and commitments make any such wholesale transformation
impossible. The alternative is to achieve such reform as we can by tightening up current pro-
cedures and exploiting available technology to make the systems now in the Fleet less vulner-
able to the forces which degrade their performance. The project reported on here was
undertaken in that setting. It does not address the question of making software systems more
reliable through better design, but only how to more effectively test the systems that we
already have. Its focus is not on change, but on gathering and using information to advantage.

The direction of the effort has shifted somewhat from its original goal, but such a
midcourse correction is not unheard of in a project with research overtones. At first the
intent was to carry out the complete development of a validation tool for CMS-2 from the
establishment of requirements to the final production, the object being to show that it could
be done. In the meantime, however, an independently funded contract was let to Science
Applications, Incorporated, a firm with considerable expertise in the field, toproduce Just
such a tool as a part of the SDL (Systems Development Laboratory) program. A collateral
effort of the original planned development was to have been a study and possible production
of a similar tool for the AN/UYK-20 MACRO assembler. But this undertaking, in turn, was
also preempted, this time by the McDonnell Douglas Astronautics Company with their Pro-
gram Evaluator and Tester (PET). In view of th%. accomplishments of these qualified
entrepreneurs, it seems pointless to attempt to duplicate their efforts.

The task of writing a set of requirements has been retained. Having been relieved of
the necessity for carrying out the rest of the development process, we have been able to
concentrate more on the requirements themselves which is entirely in accord with the cur-
rently accepted doctrine that the front end of the software development cycle should receive
more careful attention. As a result, a special effort has been made to make certain that the
requirements presented (ref 1) are specific, unambiguous, and complete. These requirements
go beyond the provisions of the tool being prepared for the SDL, and, if implemented, will
equip the quality assurance investigator with a versatile aid for comprehensive and informa-
tive software testing. Such a tool would represent the practical limit of the present state-of-
the-art in that field.

4Prokop, Jan, ed, Computers In the Navy. Naval Institute Press, 1976
Fleet Combat Direction Systems Support Activity, San Diego. "Specification of the Universal CMS.2
Programming Language," SS-2006, November 1973.

6Science Applications, Inc, San Francisco. Report RP-30, "Program Performance Specification Document
for Automatic Test Analyzer for CMS-2M (ATA/CMS.2M), by M Wilkes and MR Paige, II April 1977

4

Despite the autonomous character of the functional description,I it does not exist
in a vacuum. It is a product of its environment and the existing philosophy of software
certification. As it happens, we are in a state of transition with respect to such a philosophy.
The point of view that has prevailed up to now is best articulated by a quotation of RADM
Frank S. Haak (ref 4, p 16):

The... task involves unit testing to ensure that each program operates
without error under all possible conditions.

But in recent years the body of opinion has undergone a shift toward a less absolute position,
well expressed in reference 7, page 6:

* ,A software error is present when the software does not do what the
user reasonably expects it to do... Software errors are not an inherent
property of software.

Clearly one's approach to testing will be different depending upon which school of thought
one accepts, and, as suggested, the second viewpoint has begun to gain support without
supplanting the first (as yet).

We are, in this report and in the requirements, firmly in the second camp and predict
that the doctrine of "reasonable expectation" will eventually prevail. Nevertheless, there is
a strong residue of support to be found for the belief in "error-free operation under all
possible conditions." This is no doubt partly due to the fact that some persons are instinc-
tively uncomfortable with ill-defined situations, but probably for the most part traceable to
a concern about the unthinkable consequences of certain malfunctions of military software.
Such failures must not be allowed to happen.

It is our belief that the possibility of catastrophic malfunction is a problem that
must be specifically addressed by the software designer. Although the critical decision
points should be identified for special treatment by the quality assurance investigator, the
burden of preventing ruinous failures is not his. He enters the picture at too late a point and
is not given the infinite time or resources that would be needed "to ensure that each program
operates without error under all possible conditions."

Unfortunately, the flames continue to be fanned under the notion - a misappre-
hension in our opinion - that errorless software has a fair chance of being realized. The fuel
is supplied by the proponents of correctness proofs, who, in their enthusiasm are often less
than candid about the severe limitations on the applicability of the concept. It is not irrele-
vant to point out that the nature of the challenge which the correctness problem offers is
ideal for study in an academic setting in which dissertation topics need to be generated. In
this instance, it may well be that Kaplan's "law of the instrument" - if you give a small boy
a hamimer, it will turn out that everything needs pounding - is operative, especially if funds
for the pounding can be obtained from a willing source.

Since the correctness approach is rarely discussed with candor by those who have a
vested interest in its success, we have taken the liberty of including a brief critique of it in
this document. A full understanding of the verification issue, which is what the testing
requirements implicitly address, must include a grasp of the role of program proving in the

* •present and foreseeable future development of tactical software.
The last sentence immediately above highlights an unexpected difficulty that was

encountered in the course of writing this report: The lack of an adequate and agreed upon
, vocabulary for distinguishing the key ideas from one another and expressing them with

precision. The nickname "V&V" is applied to the general area of concern in which verifTcation
was at one time supposed to mean the search for errors In a simulated environment and
validation to mean the search for errors in a real environment. As it has turned out, the

71
7 Dijkstra, EW, "Programming Methodologies: Their Objectives and Their Nature." In Structured

Programming, D Bates, ed, pp 203-216. Infotech International Limited, 1976

5

distinction has not been a useful one and the two words have been appropriated to express
other meanings since the necessity for terms that do discriminate among those that need to
be kept separate has become more and more acute. The present situation is chaotic. In the
absence of a standardized vocabulary, we have been forced to make our own definitions and
even to inject a new term, authentication, into a picture that is already confused. For this
we apologize and declare in extenuation that we have made every effort to be self-consistent
in our use of all the words which appear here and in the associated requirements document.

3.0 NECESSITY FOR SOFTWARE VERIFICATION

If, in the days when the computer was emerging as a revolutionary new element in
military tactics, any of the people concerned with the production of computer programs
foresaw what a towering issue software complexity* was to become, they did not go out of
their way to articulate their views. At that time complexity was not thought of as a problem
at all. The prevailing wisdom was that, with the machine as an ally, there was virtually no
limit to what man could accomplish in dealing with intricate decision patterns. But com-
plexity since then has become a question of great urgency and its effects on military software
have been far-reaching and frustrating; they have eventually led to reevaluation of the role
that each component in the software development chain carries out and have culminated in
directives for tighter and more realistic management controls. Certainly one of the m~or
foci of the new interest in the software process is at the point of quality assurance; it is here
that the software faces a moment of truth as it leaves the hands of the producer and, under
the scrutiny of an umpire, passes over to carry out its functions at the hands of the consumer.
Quality assurance is supposed to make the user of tactical combat systems reasonably secure
that the software delivered will not churn out unpleasant surprises when he tries to make it
work. That quality assurance up to now has been inadequate is admitted by almost every-
one; those who are informed recognize that it is simply a result of the overwhelming cumu-
lative effect that complexity has upon the process of turning out a large computer program,
and that it is not necessarily a manifestation of human incompetence.

Two major thrusts have been made to alleviate the problem. One, about which much
has been written, aims at improving the programming discipline and technique. While a
successful effort here tends to increase programmer productivity and perhaps to reduce harm-
ful side effects resulting from nonuniform coding practices, it has not wholly succeeded In
coming to terms with the inherent complexity of a problem itself as distinct from the way it
is decomposed for sharing among several programmers. Thus, structured programming
(under whatever name) has had important benefits but it has by no means been a cure-all.

The second approach is directed at the program rather than the programmer. Although
program simplification, where possible, is certainly one of the goals of this approach, it does
not see the problem as one of simplification alone. After all, complexity is not some sort of
accidental demon that must be exorcised; it is merely an acknowledged property of the real
world. Insofar as computer programs faithfully reflect that real world, they are inevitably
going to be complex, and increasingly so as the models of the world become more realistic
and comprehensive. The second approach, therefore, sees complicated programs as nothing
more than normal phenomena which need to be understood rather than deplored.

J "Complexity" is used here only in its general sense and does not refer to the burponing technical area
of time-memory estimates in terms of program size.

6

There are two distinct schools of thought, however, when it comes to the practice of
quality assurance of complex programs. One might be called the global viewpoint: it regards
a program as a logical system which may be verified once and for all by formal procedures
analogous to those used in proving mathematical theorems. The objective of quality assurance,
according to this view, is to establish the correctness of a program - a program being correct
"just when it satisfies the program specifications (ie a mathematical description of the concept
that is to be programmed) and free it from implementation errors. The other viewpoint
places less emphasis on the structure and more on the functions that a program is to perform.
It is not so much interested in logical consistency as in making sure that under particular
combinations of conditions certain results will be obtained. Quality assurance is conceived in
terms of careful testing to yield information about the performance of a program under condi-
tions specified by the tester. This process is called validation and the associated property is
walidity. A program is valid when it has successfully passed a battery of tests. Since we need
to make a distinction between validation and validity, we will adopt the new term authentica-
tion to mean the establishment of correctness. Verification will be taken as the common term
embracing both authentication and validation. Although these terms are not standard (there
is, in fact, no universally accepted terminology), they are convenient for making the necessary
distinctions and do no violence to the concepts they name.

The concept of correctness has aroused considerable interest recently, with hints that
authentication may be an attractive alternative to validation as the main resource for quality
assurance. It is not hard to understand why this might be an alluring prospect. Quality
assurance, up to now having to depend exclusively on validation, has not made high marks.
Unpleasant surprises have been far too frequent. Often the user of naval tactical software
has been given programs which have not even met the requirements. Since quality assurance
is supposed to catch such things, it becomes a target for criticism for not fulfilling its function;
the scapegoat is validation. Hence, when correctness is suggested as a possible alternative to
validity, it is eagerly - often uncritically - embraced.

It is essential that correctness be seen in the proper perspective. While it may assume
importance at some future time, and for that reason deserves the attention of anyone seri-
ously concerned with the means for producing more reliable software, it has for now been
oversold by its proponents as a replacement for the conventional testing approach. The
impression that it guarantees elimination of all errors has been cultivated, perhaps due not so
much to any intent to mislead as to R&D culture that encourages puffery. At any rate, a
discussion of its drawbacks is needed to strike a balance. In the following section, we have
intentionally accentuated the negative not to rule out authentication as a weapon in the
quality assurance arsenal but rather to alert the prospective software customer who may be
intrigued with the idea of formal proof to the actual character of authentication when placed
against validation, especially in view of the increasing availability and sophistication of valida-
tion tools.

4.0 CORRECTNESS: THE FORMAL CRITERION OF QUALITY ASSURANCE

As long ago as 1960 it was pointed out that programs are algorithms; algorithms are
similar to the proofs of theorems in mathematics. By 1960 there had been a great deal of
interest by mathematical logicians in discovering the formal criteria that alleged proofs must
satisfy in order to be valid; it was only natural that these studies should be extended to includeS~programs as well.

7

The advantage in having the correctness of a program established is quite clear. If the
user knows that, given a certain inpust (which, of course, must be restricted to some family of
legitimate inputs), he is always assured that he will have a corresponding output, he can relax,
confident that nothing can go wrong. Moreover, testing,, which is time-consuming and expen-
sive, is rendered unnecessary, for the user is guaranteed that the program will work correctly.

It is no wonder that correctness is seductive, but one must not fail to look for the fine
print. The first fact to be faced is that correctness proofs are not yet in a production status.
The favorable examples that have been cited up to now are all experimental. Successful
experiments are certainly necessary, but they can by no means be automatically extrapolated
to realistic states of affairs,

Second, correctness proofs are static: that is, they depend upon the structural
properties of the program to which they are applied and not upon their execution. There
is no way of taking into account new information produced during program execution. Those
who are intrigued by ihe notion that authenticated programs are infallible should satisfy
themselves that the troubles which they expect to be eliminated are in fact derivable from
deficiencies in program structure, Program execution often brings us face to face with other
realities, such as overflow or questions of precision; these and other machine-dependent
phenomena are, as a rule, disclosed only by well-designed test runs and would be immune to
detection by static analysis. In rebuttal, the advocates of program proofs answer that when
a program to be proved is designed to run on a particular machine, the machine characteris-
tics can be incorporated into the initial conditions, just as the hypothesis of a theorem is
constructed to include all of the requisite conditions for a valid proof in mathematics.
Granting the literal truth of this assertion, it is overstating the case to imply that all the
essentials could be accounted for without some sort of process equivalent to testing.

Third, apart from the calamities that may befall particular programs on particular
machines, the dynamic interplay in tactical software systems introduces a higher order of
complexity not apparent in the formal structure. This is sometimes called the "team effect."
The ultimate way to overcome complexity is, of course, to try to decompose the complex
system into simpler subsystems which can be dealt with individually. Both the proving and
the testing approaches rely on this principle. But from experience with testing large pro-
grams, we have learned that the whole is often greater than the sum of its parts in the sense
that such phenomena as sequencing, for example, may cause interactions among the parts that
are not apparent in the structural decomposition. The circuitry of the hardware may have
effects which do not show in the program flowcharts. Thus, there are dimensions to the com-
plexity of large systems which do not readily lend themselves to formal analysis.

Fourth, to advocate correctness as a criterion for reliable software is to be in conflict
with current military doctrine as expressed in numerous recent reports. The new enlighten-
ment recognizes the primary cause of software failure as attributable not to defects in the
software as such but to faulty translation of information: requirements which do not com-
municate the problem, specification errors due to poor requirements definition, design errors
due to poorly understood specifications, and so on. Coding errors, in fact, are only a relatively
minor annoyance. The concept of correctness, however, is based on the premise that program
errors lie in the software itself. To prove that an algorithm correctly mirrors the specifications
and that it always terminates may well confirm the programming while leaving the central
predicament unrelieved.

Fifth, the analogy that furnishes the rationale for correctness proofs, namely, the
similarity to mathematical proofs, is only superficial; it overlooks important differences
between the goals, methods, and attitudes of the mathematician, and the programmer.

8

These differences are subtle but pivotal. The mathematiciai, begins by attempting to estab-
lish a new result he suspects may be deducible from what is already known. If he is
successful, fine; if not, he is not averse to shifting his sights to make some essential change
in the target result in order to be able to construct a valid proof. The collective function of
the mathematical community is to forge an interlocking system of results that can be
demonstrated. If it turns out that some of the results are surprising - well, that makes it just
that more interesting. The mandate of the programmer, on the other hand, is not to build up
an accumulation of correct but curious programs - it is to solve particular problems. He is
not at liberty to tinker with the problem in order to convert it to something more tractable.
In other words, he needs to be concerned with the "truth" of his hypothesis, whereas to
the mathematician, a hypothesis may be merely a convenient tentative conjecture.

Moreover, the mathematician has at his disposal a finely tempered language that has
evolved through centuries of trial and error by thousands of workers which is now univer-
sally employed and understood. This makes for easy communication and facilitates the
interlinking of the entire mathematical literature. Would that the programmer were so for-
tunately endowed! As an example of what is meant here, consider the arithmetic mean of
two numbers. The mathematician simply writes (A + B)/2 and proceeds to use that expression
wherever he needs it. In contrast, the programmer must think of it as A + (B-A)/2 and deal
with special cases depending on the relative magnitudes of the two components.

Again, the theorems of the mathematician do not typically announce results in terms
of special cases but rather in all-encompassing generalities. The most admired and sought-after
results are those which apply to the widest classes under the weakest possible assumptions.
Elegance consists in making the least resources do the most work. In computing, on the other
hand, the situation is reversed. One typically considers what happens to each of a series of
alternatives by means of a case-by-case examination. Each possibility must be accounted for
individually. Elegant programming is that which lays bare the option structure rather than
covering it up. Abstruse compactness, so prized by the mathematician for its ability to sweep
up a host of implications in a few symbols, is the bane of good programming. In mathematics,
for better or for worse, one carves out a niche for himself by becoming expert in a limited
specialty. Producing research has a game-like aspect in which the object is to narrow the num-
ber of those who can truly understand one's work; it is an intensely egocentric activity. The
successful systems programmer, in contrast, must constantly strive for clarity, must make
every detail explicit, must resist every impulse to confer on his programs his own trademark,
and must be content with - even take pride in - seeing his own contribution lose its identity
as it merges into a larger "whole."

Finally, those who profess to see a panacea in correctness tend to be overly sanguine
about the ease with which the sheer magnitude of system software will be tamed. As of
today, no program with significantly more than a hundred statements or so has been authen-
ticated. Is it really possible to prove the correctness of a large and intricate system without
spawning a huge piece of proof software? And will this not in itself be plagued by as many
flaws as the programs being examined? The stock refrain is that we can mechanize the proof
process by turning all the drudgery over to the computer. Whether this will ultimately
become fact remains to be seen, but in any case it will be years before techniques of program
proving are brought to the point where they will be potent.

If the current rhapsodizing about correctness tends to exaggerate the role of authen-
tication, an objective appraisal would not rule it out of a total quality assurance program.
As indicated above, it obviates the need for certain types of tests, namely, those which are
directed at the structural and logical properties of a program, and in some cases it may be

9

sufficient by itself. It has been used to detect a flaw in a structured, tested program; 7

conversely, errors have been discovered in programs that were previously proved correct
(reference 8, page 319). It would seem, therefore, that authentication should be promoted
as a supplement rather than an alternative to validation. For the present, if it encourages
language designers to make certain that the constructs they program are amenable to proof
and if it influences programmers to think in more formal and precise terms, it will have made
an important contribution to better software.

Recently the point has been emphasized that any computer program consists of just
three elemental types of executable components: the sequence, the branch, and the loop.
The different ways of combining these elements are endless in number, but it is not incon-
ceivable that particular combinations might turn up more frequently than others. It is
tempting to try to formulate an analogy with the constitution of complex molecules out of
the twenty amino acids and an even smaller number of nucleotides. If such patterns can be
identified, they would go a long way toward putting the study of correctness on a system-
atic basis with a corresponding enhancement of value in quality assurance.

5.0 THE PROGRAM GRAPH: A UNIFYING DEVICE

In the preceding section we discussed in rather brief compass the point of view that
computer programs have properties of form from which we can extract information that
bears upon whether the program faithfully models the problem it is supposed to solve. The
distinction was drawn between the examination of the program on the basis of its formal
structure and the observation of its performance by means of tests. We now propose to
argue that the gap between these two approaches is not, in principle, as wide as might be
imagined.

In the first place, the objectives of both verification techniques are exactly the same:
to give the user assurance that the software delivered to him will behave as he would
reasonably expect it to. The expectation may originate either from an interpretation of
the official requirements and specifications or from a common-sense understanding of the
problem being addressed; there should be no essential difference. In either case the defining
criterion is not an intrinsic property of the software but is the judgment of the user. That
the common objective is nontrivial is well attested by past experience. Everyone is willing
to accept the fact that events beyond the control of those in the software development chain
or the user himself are bound to happen. To prepare for every imaginable contingency
would be out of the question both practically and economically - there would still be the
unimaginable events. When "unforeseen" incidents occur, they must be handled in an ad hoc
manner on the spot - that is what unforeseen implies. What have been referred to as "unpleasant
surprises" are, rather, those contingencies which the user, unless he has some sort of morbid
obsession with Murphy's law, has every right to expect not to occur because of what the
software is supposed to be and do.

The two concepts, authentication and validation, complement each other in their
modes of attack on the problem in much the same way as form and function are complemen-
tary aspects of any artifact. Since computer programs have formal structures whose proper-
ties are readily accessible, it does indeed make sense to study those properties and attempt to
develop a coherent theory to account for them. It is, in fact, rather startling to many to learn
8Myers, Glenford J, Software Reliability, John Wiley & Sons, 1976

10

that mathematically rigorous proedures are not already in everyday use as a routine strategy
for ensuring that programs work. ay

It is equally plausible for the operational character of programs to be exploited.
Programs are seliom created in a vacuum merely as playful intellectual exercises; they
practicaily always are devised as a means for solving some extraneous problem. When one,

, considers how to verifythat the problem in question is indeed solved, the first, and probably
only, method, that comes to mind is testing. Choose 2 set of test cases, try them out, accept
the program if,it passes, and fix it if it doesn't.

Both approaches to verification depend for their success on the same fundamental
principle: that Which comes out is the offspring of what goes in. Correctness proofs by
their very nature yield valid conclusions only on the basis of precisely stated hypotheses.
It is often tedious to have to discover all the assumptions that have gone into the construc-
tion of a prograni and to make each one explicit. Proof is of necessity specific to t~hose
assumptions And custom-made merchandise always comes at a high price. The demands are
hardly less stringent in the case of validation by testing, for in order to be sure that a test is
furnishing the right answer, one has to know exactly what the rogram is supposed to do.,
"What we can't specify we can't verify," Perlis has observed,l Iand the truth of the remark
is the same no matter which route we may choose to attain verification.

It is a striking and heretofore not sufficiently emphasized point that the principal
tool on which both testing and pr'oving rely is the same -- the program graph. Directed
graphs are out one of several ways to schematize the organization of a program - others
being, for example, flowcharts aid decision tables - but they are emerging as the most useful.
Whether the programmer first constructs a graph and then writes his program using the graph
as a guide or first writes the program and then draws the graph is not at issue here. The point
is that to each program there corresponds a linear directed graph,* which makes visible the
relationships that exist among the various elements while at the same time suppressing the
inessential. Since the human mind seems to work especially well with two-dimensional visual
patterns, the graph is a handle by which leverage on the intricate workings of a program may
be secured.

One often meets the term "graph theory" these days in connection with programming
but there is a potential false impression in the use of this term. The theory of graphs is a
flourishing mathematical discipline having come into its own about 20 years ago. It has
contributed terminology and a framework for modeling the structures of organizations in
many fields, including computer programming. But programming has not drawn deeply from
the technical content of graph theory; it is not necessary to be proficient in the theory to deal
with the graph of a program. Hence, it is somewhat misleading to suggest that program verifi-
cation involves graph theory as such.

Be that as it may, the program graph is almost indispensable as a foundation for a
correctness inquiry. A graph is simply a set of points and lines. A graph is directed if all of
the points are connected by the lines and each of the lines has a preferred direction, In pro-
gramming applications the points are usually called nodes and the lines arcs. We have already

9Davis, Ruth M, "Evaluation of Computers and Computing." Science, vol 195, p 1100, 1977

IOPerlls, AJ, SIAMNews, vol 10, no 3, p 5, June 1977

IHarary. F, Graph Theory, p 10, Addison-Wesley Publishing Co, 1969
*Technically a pseudograph, since loops are permitted; cf reference 11. As is common, we use the term

"graph" to refer not only to the basic structure but also to certain subgraphs obtained by reduction.

11

iidentified the elementary executable components of a program as the sequence, the branch,
and the loop. By the structure of a program we mean the way the program is built up out of
these elementary components. The structure is represented by a directed graph when the
arcs correspond to sequences and the nodes to branches. A loop corresponds to an arc
whose initial and terminal points coincide. The "flow" of a program is shown by the direc-
tions of the arcs. ,The graph sets in relief the relationships that exist in a program in a way
that can be easily comprehended.

It is, thus, ,fairly natural to conceive of a program proof in terms of a walk through
the associated graph with appropriate rules of inference being applied ot the nodes. We
mention in passing tlat in addition to the familiaO-eometrical presentation of a graph, which
is of inestimable value to the human beingseeklng to comprehend ,the intricacies of a pro-
gram, there are algebraic representations of Staphs that are more suite:; to the computer. The
technical m'nifestation of a proof is notrunlike the analysis of switching circuits,by Boolan
"functions.

The graph is also helpful to theltest engineer when a program is submitted for valida-
tion. It enables him to design his tosts with due regard for the execution paths, so that, in
principle, the tests will collectively *over thc various execution possibilities, In practice,
even with the aid of the program graph, this can be a formidable 6tak. It is here that validation
tools discussed more fully below enter the picture. The point to be made here is that the
program graph is Just as basic to validation as it is to establishing correctness.

Since obtaining the prograin graph is the first step in the investigation of both validity
and correctness, it is a potential basis for a unified treatment. It is important, however, that
one keep in mind that validation and authentication are distinct processes based upon differ-
ent concepts. Each has its own domain of application and its own technique, and, as indicated
above, its own conception of the nature of a program.

6.0 VALIDITY: THE FUNCTIONAL CRITERION
FOR QUALITY ASSURANCE

We turn now to a more detailed discussion of validation, the verification of a computer
program by performance testing. In contrast to authentication by proof, whose outcome is
an all-or-nothing result, validation admits various degrees. Except in trivial cases, it will not
yield certainty but only probability that the program is without flaw. Consequently, the
quality assurance investigator must give careful attention to test design in order to maximize
that probability under the time and cost constraints he has to observe. In any case, the valid-
ity of a program is always relative to the particular set of tests applied. In weighing validation
against authentication, it is clear that for the former the most indispensable human attribute
Is ingenuity in planning, whereas for the latter it is skill in the manipulation of symbols.

Since validity of a program depends upon its execution, the test engineer must be
especially adept at interpreting output that may not be anticipated. Failure of a test can come
about in many ways; in particular, it can alert the investigator to side effects invisible to an
armchair examination of the program. It must be a part of his planning strategy to afford
maximum opportunity for such informative phenomena to surface. If the goal of authentica-
tion is an error-free program, the aim of validation might be said to be to expose as many
aberrations as possible.

1I

In view of the demands upon the test engineer and the key role that his work plays
in the software development cycle, there is a potential inclination to frustration and pessi-
mism on his part. Recent years have seen help for him appearing in two different forms.
One is at the front end, where there is now a strong movement to require more diligence
than has been exercised In the past. When system software projects are better thought out
to begin with, and when care is taken to make the requirements and specifications explicit,
unambiguous, complete and consistent, then the test engineer can be more specific In what
he looks for. This will relieve him from the kind of pressure that arises from looking but
not knowing what he is supposed to discover. It should, moreover, mean that he gets
cleaner code from the programmer, who himself will have less second-guessing to do.

The other aid, which is now fast becoming a reality and which is the chief concern
of this report, is the availability of validation tools. Validation tools are based on the concept
of cooperation between man and machine. The quality assurance investigator has in his
mind those aspects of the software in front of him that he would particularly like to check
out. At the same time, he wants to be sure that he does not overlook something that might
be important. The machine can be of help in several ways: for example, by telling him what
portions of the program his tests have missed. In order to enlist the aid of the machine, the
test engineer has to have at hand the means to make the computer do his bidding - this will
be a piece of software called a validation tool.

What makes validation tools feasible is the unclouded schematic organization which
the program graph provides. By insertirng probes in each arc, for example, we can extract
certain desired data every time the execution flow of the program passes through the arc.
These data can be stored for later processing. Thus, we see that there are three main constitu-
ents of a validation tool: something that determines the graphical structure of the program
"under examination, something that extracts data while the program is running, and some-
thing that processes the data after the program is finished.

Each of the three constituents is a piece of software and as such has time and memory
requirements of its own. The first and third are carried out off-line and, therefore, do not
contend for the attention of the machine with the program being tested. But the second
occupies memory during execution of the program, adding to the normal overhead, so must
be contrived with care. The probes mentioned above are transfers of control to some sort of
auditing procedure. If all this procedure does is to count the times each probe is activated,
the overhead demands are not great. Consequently, most of the validation tools in existence
contain a basic package which does just that. The best tools of this kind today require a
memory increment of about 25% and slow down the computation by about 25%; these are
probably close to the ultimate limits. After the testing process, the program is recompiled
with the probes removed.

The merit of any particular tool rests in part, then, on the amount of useful informa-
tion the post-processor is able to wring out of the data produced by the probe and, to be
sure, on the skill of the investigator in interpreting the information for his own purpose.
There is an intimate relation between the content of the tests and the way they are executed;
one has to know what the tests are supposed to show in order to know what to ask the tool
to provide. For that reason, the investigator must have a full range of options from which
he can select just what he needs. In any case, the probes must be noninterfering - that is,
their presence in the instrumented program must not affect the program under test except
for the unavoidable real-time degradation due to the extra overhead. The situation may be
considered as equivalent to a scientific experiment in which the influence of the observer is
to be minimized.

13

Although the instrumentation of a program normaliy entails the placing of a probe
In each arc, this does not mean that the investigator will attempt to look at every possible
path through the program where a path Is a succession of arcs and their separating nodes.
This would not be feasible. It is still up to the tester to make a shrewd selection from the
set of all possibilities; with the clever use of the validation tools available to him, he can
assert with confidence that the probability of error in the program he has exercised has been
reduced to an acceptable threshold.

Developers of validation tools of the type we are discussing report that under the
conditions prevailing in the writing of large programs today, it is often impossible - not
merely computationally impractical but literally impossible - to test every path through an
entire program. Programmer A, for instance, builds into his portion certain protective
devices for fault tolerance or error resistance. These devices may well inhibit the flow of
the program over paths that would result in the errors to be prevented, not only in Program-
mer A's portion but in Programmer B's as well. One of the experts in the field (Michael
Paige) has estimated that in a large program perhaps 10% of the paths will be untestabl2.

In the program graph, the sequences and the branches separate. each other. A rea-
sonable strategy for the tester is, therefore, to test the initial sequence and to make sure
that each branch is executed in all possible ways. If the postexecution summary shows that
this strategy has failed to reach all of the sequences, the investigator can write new tests to
make up for the deficiency.

In summary, the basic validation tool counts the executions of each statement in a
program when a set of test data is applied. The investigator then has two types of output.
The first is the test results which have historically defined the role of quality assurance in
the software development cycle. The second, provided by the validation tool, is something
new: the identification of each statement in the program together with the number of times
it was executed. These primary execution data may be supplemented by statistical summaries
of various kinds, depending upon the desire of the tester. From the output of the validation
tool, the test engineer can see at a glance what parts of the program have not been reached
by the tests or, perhaps, what parts have been tested more than necessary. After interpreting
the figures, he can decide whether his original tests have met the standards of adequacy for
exercising the program or whether further testing is called for.

7.0 VALIDATION TOOLS

Everything said up to now may be considered as an introduction to validation tools -
the chief subject of this report. We will now discuss the rationale and capabilities of the
tools. Recall that a validation tool is simply a piece of software intended to assist in the
evaluation of other software products.

The idea of cooperative interaction between man and computer is an old one that
takes many forms. Often it is espoused with a philosophical axe to grind: to play down the b

uniqueness of man's endowments and to draw the conclusion that eventually the machine
will do everything that man can do, only faster. The ideal state will be attained when an
entire operation is fully programmed by formal rules. Wnile this extreme view is seldom
advocated outright, and would probably be disowned if challenged, its influence is pervasive.
Even among those who deal with military tactical systems, to whom of all people the folly

14

of such a view should by now be selfevident, one can detect vestiges of belief that the
computer will ultimately take over the entire conduct of an operation. It is an immediate
corollary then that the process of software verification will also be completely automated.

We do not hold that cooperation is some sort of way station on the route to full
automation. Symbiosis is, rather, a desideratum to be pursued on its own account. This
view is not only highly tenable, it is liberating: it seeks to allow the oomplementary poten-
tdals of both man and machine to be realized at any given time and it frees one from the
obsession that somehow he/she has only half a creation as long as man is in the loop at all.
For quality assurance it means that the investigator is encouraged to think of each piece of
software to be verified as presenting a different problem. He has to discover what that
problem is and then, working within the time and cost constraints imposed upon him, to
use his knowledge and skill together with the resources of the computer to solve that prob-
lem. In short, his is a distinct profession, and as behooves a professional, he is the judge as
to what course to follow to achieve the verification goals. It is up to the system management,
in turn, to furnish the investigator with the best facilities available to carry out his responsi-
bility. Among those facilities will be validation tools and the means to apply them.

Validation tools are a comparatively recent development in software practice. Accord-
ing to a brief sketch of the subject, 12 the first attempts at dynamic analysis were reported in
1967 by G. Estrin. 13 Since 1967 several projects have resulted in tools of differing quality,
most of them designed to operate on programs written in FORTRAN. All have, in common,
the purpose of furnishing coverage data. As more experience has been gained, techniques
have been refined and, as would be expected, more recent examples show vastly improved
performance characteristics. The usability of validation tools is now virtually independent of
the programming language to which they are applied, but the technical implementations, of
course, differ from one language to another.

What does such a tool actually do, how is it used, and why is it a desirable "thing" to
have? The concept has not changed materially over the decade since it first appeared. The
object is to relieve the investigator of the nagging worry that his tests may not have sufficiently
covered the spectrum of possibilities that a given program offers. When he has to trace through
the program for this purpose himself, the labor is likely to be great. The tracing process is,
however, a reasonable candidate for automation. By means of probes, the number of times
each statement in the program was executed in performing the test is detected and recorded.
With this information, the user can discover much more quickly exactly what he has tested and,
on the basis of that discovery, decide whether further testing of the program is called for. The
tool is indifferent to the content of the tests - it is only concerned with how the tests have
used the statements of the program.

From the execution counts - the primary data returned by the tool - other informa-
tion can be derived. In addition, the formation of the program graph, which is a necessary
preliminary to testing with the tool, entails the generation of certain facts about the program
as by-products. It is possible, therefore, that the tester may have a considerable amount of
information at his disposal in addition to the test results themselves. In paragraph 3.1 of
reference I, we have listed a number of items of potential use to the tester, even thoughi it is
not likely that he would want to utilize them all each time he runs a test. The list is not
exhaustive.
12Science Applications, Inc. La Jolla. Report RP-l 7. "Discussion of Automated Verification Systems:

For Inclusion in SDL," May 1976
13Estrin, G et al, "SNUPTER COMPUTER - A Computer in Instrumentation Automation." AFIRS Spring

Joint Computer Conference, 1967 151

8.0 SOME SPECIFIC TOOLS

Once a program has been Instrumented with probes to count executions, it is natural

to ask whether other data could not also be obtained in the same way. The answer is affirm-
ative but with a big caution sign. The warning is that every such accretion adds to the
overhead and distorts the real-time performance of the test program. Whether or not the
quality assurance investigator decides to avail himself of any particular capability will depend
upon what he regards as important to know in making a judgment about the software at hand.

A. DATA FLOW ANALYSIS

We have observed that the program graph, or Its equivalent, is fundamental to any
type of verification. It is the graph that lays out the program structure - the logical relations
connecting the various parts of the program. Authentication certainly depends upon it, and
validation of the systematic type we are considering also requires it. But it can be exploited
for other purposes. The graph is basic to data flow analysis. This term refers to another
verification technique in which the behavior of the data used by the program is studied to
draw conclusions about the program operation. The input data are tracked as they are con-
verted by the program into intermediate results and ultimately to the final output. The anal-
ysis is static in that it does not require actual execution - and in that respect it resembles
authentication -- but is heuristic rather than algorithmic. It is concerned with such matters as
the efficient allocation of storage for all variables during the course of the program, and for
that reason it may be regarded primarily as an optimization aid. Its usefulness for verification
is that it detects anomalies in the data flow, which in turn are evidence of programming
errors. It may have to be resorted to if tests devised for validation do not yield expected
results whose cause is not immediately apparent.

The importance of data base analysis is stressed in reference 3, and it is appropriate
to comment parentheticilly on it at this point. As the authors remark, one must develop
and use means for verifying the structure, contents, and access methods of the data bases of
software systems. We agree. But at the present time the locus of such an effort would appear
to be in the compiler diagnostics instead of in quality assurance. The quality assurance
investigator is, of course, not precluded from devising tests to satisfy himself that errors due
to faulty data treatment do not occur, but the close relation of data base analysis to
language issues and the nature of the analysis itself - checking rather than testing - suggest
that this analysis should be carried out at debugging time and not left for quality assurance.

B. SYMBOLIC EXECUTION

Closely related to data flow analysis is symbolic execution. This is a technique for
expressing the value of every program variable at each node of the program graph in terms of
the input value of that variable without the use of real data. It verges upon authentication -
the intermediate and final values of the variables are just the results of the logical action of
the program statements on the input values. A complete symbolic execution is tantamount
to a program proof. Evidently both symbolic execution and data flow analysis furnish a
great deal of information about a program, and, hence, facilitate powerful diagnostics;

16

by the same token, they require substantial overhead. The cost effectiveness of purchasing
aand using such tools must be weighed against the more modect demands (and more modest
information return) of the validation tool that merely provides execution counts.

C. CLOCK PROBES

If one can insert probes into a program to activate counters, one can also put in
probes to read a real-time clock. Now, it is obvious that\clock readings obtained in this way
would themselves degrade the real-time performanke under test, and one might ask why
clock readings would be needed at all if real-time performance were not an issue. The para-
dox disappears, however, when questions about the time sequencing of steps in the execution
of a program are important. Clock probes may be indispensable in that event. When these
probes have served their purpose for testing, like the other instiuments, they are removed
from the program.

J3

D. DIRECT CODE

The validation tool ordinarily responds only to source language and does not take
notice of direct code instructions when the direct code is not embedded in a statement
sequence. If the direct code is infrequent in the programs expected to be submitted for test,
it is not cost effective to try to incorporate into the tool the capability of handling the code
as it is not a trivial task to accomplish. The few instances of machine code that there may be
can be scrutinized directly by the investigator to determine their effect. On the other hand,
if the software to be examined is an assembler, and if assembly language is expected to be
regularly submitted to quality assurance, there would be good reason to consider a validation
tool for the assembler.

Whethet to do so is a management decision having ramifications outside the scope of
this document. The issues of programming discipline and the machine-independence of the
system software are involved. Quality assurance is necessarily bound to whatever cognizant
management deems to be in the best interests of the system under consideration.

•I A validation tool for an assembler differs from the kind we have discussed in the
linguistic signals it must be designed to accept. The latter requires symbols to be named, forI example. All in a 1, different techniques are called for and for that reason the requirements

we have set forth do not apply to an assembler.

E. TEST GENERATION

One normally regards design of the tests to be within the province of the human
member of the man-machine partnership since intuition and judgment play important roles
in that activity. However, if the software is to be examined a,.cording to some standard
scenario or when the test data are to be chosen from some existing library of data formats,
it makes sense to consider programmed generation of the tests by the computer. In such a
case a single tool would generate the test input, check the output egainst expected results,
and provide the investigator with a summary printout of the whole story.

17
__--

F. STANDARDS ENFORCEMENT

Since the production of software for a tactical system is a team effort, the program-
mers must be held to standards set by project management and higher authority. For better
or worse, the quality assurance group is sometimes designated to monitor the observance
of those standards. In that event, means will be needed to inform the tester whether pre-
scribed standards have been adhered to. Since comparison of programs under test with
formal criteria is routine and repetitive, a tool for carrying it out by machine is indicated.
The tool might even be designed to cast the source program into an acceptable standard form.

It should be pointed out that standards enforcement is distinct from either validation
or authentication, though not independent of them. It is no doubt more satisfactory in
principle to carry out standards enforcement at some stage other than quality assurance. In
many cases, such checking is done by the programmer at debugging time or it may be built
into the compiler diagnostics.

G. ACCURACY DETERMINATION

When numerical computations are an integral part of a system, especially when the
results of computation are passed from program to program, the problem of accuracy can
be formidable. Errors due to round off or overflow can accumulate with unpleasant, even
disastrous, effects. The control of those errors is properly the job of programmers trained in
numerical analysis. However, the quality assurance investigator may desire or be required to
determine whether the program variables survive computation with requisite accuracy. Once
again, this activity is a reasonable candidate for automation. The method for monitoring
accuracy requires that the variables of interest be flagged and probes inserted after arith-
metic computations on those variables; we. thus, have a different set of probes from those
that indicate execution counts.

H. SIMULATION I
Programs are always written to operate within a certain environment and the seal of

quality assurance implies that the approved program is certified for the conditions under
which it is expected to be actually used. In some cases, the environment is summed lip in
the indicated allowable ranges of the variables of the program. In other cases, there may be
real-time constraints that are not apparent from an examination of the source program
itself. Whatever the circumstances that constitute the environment, it is of prime importance
to the test engineer to be able to say not only that the program operates properly but that
it will do so when subjected to the conditions it will encounter in tactical situations. Unfor-
tunately, it is rarely possible to make the tests In situ. An alternative is to create a setting
as nearly like the actual environment as possible. In such a case, the software providing
the simulated environment may be considered a validation tool.

These brief statements about validation tools are intended to illustrate the oppor-
tunities within reach. It is apparent that the possibilities are varied and that collectively
they can place a great deal of capacity in the hands of those who must certify the software.

L Since their application is not limited to a single program but has continuing use even from

.. 18

system to system, an open-ended library of such tools would seem to be a good investment.
At the same time, it should be emphasized that, like any other tool, a validation tool is an
inert instrument, realizing its intended function only when it is used properly by a skilled
technician.

It is appropriate to mention in passing what a validation tool is not. In the first
place, it does not replace debugging. The latter continues to be the responsibility of the

Sprogrammer and must be exercised with no diminution of vigilance. In fact, it is stipulated
that the source program to be validated must be compilable - that is, free from syntactical
errors - before the tool can be applied. This is not to say that the tool will not turn up an
occasional bug as a by-product, but the major concern is with program content rather than
form. Nonetheless, there is an overlap if not in objective at least in technique, and it is not
surprising that if the programmer develops a comprehensive diagnostic package, he is likely
to have anticipated quality assurance in some of his own tests.

It would, moreover, seem that whenever it is possible for a validation tool to make
use of procedures designed for debugging and already available, it would make sense to do
so. At the present time, however, it is often difficult for quality assurance to gain access
to the data in a form that it might use to advantage. As a result, there is undoubtedly
duplication of effort. The answer is that when complete top-down design of software sys-
tems comes into its own, the diagnostic and validation tools may be integrated so that they
can work together. Looking even further ahead, one can predict, or at least urge, the
unification of debugging, optimization, proving, and testing at a single facility in the software
development cycle which the programmer can invoke at any time. Such a concept (as the
author learned in discussions with the people involved) underlies the research in new tool
technology at Harvard.

Verification is not to be confused with field maintenance and repair of the software,
which under conditions that are now foreseeable, will always be something the user will have
to contend with. However, as changes in the software are made in the field, the question of
whether previoua certification continues to be in full force may come up. Since it may be
impractical to get the software recertified by quality assurance, the field maintenance crew
should themselves have a rudimentary validation tool or two to enable them to make rough
checks.

9.0 SCOPE OF THE REQUIREMENTS

As indicated, the requirements are supposed to be fairly general statements about
the software to be produced. In the case of tactical software systems, they relate the system
to a particular mission the Navy is to carry out. The ultimate criterion the software must
meet is to satisfy the requirements. As the software development process Is currently per-
ceived, the requirements are followed by the design specifications. These specifications,
which translate the requirements into the details that govern the writing of the programs,
invoke programming expertise in the high-level source language tobe used in the system.

Inasmuch as the process of constructing a validation tool is being carried to com-
pletion with the production of the Automatic Test Analyzer (ATA) by Science Applica-

tions, Incorporated, it may be askefi whether preparing a functional description of a
validation tool for CMS-2 software is not superfluous, an ex post facto creation. The
answer is negative.

19

The Automatic Test Analyzer is one of a sequence of tools representing increasing
experience on the pirt of a group of experts who have been interested in the automatic
validation problem. 3 The point of view from which ATA is being produced is that the
lessons learned in developing its predecessors are to be applied to make ATA the most
efficient tool that the group has yet turned out; in other words, ATA is primarily the
result of an internal acquisition of proficiency rather than a conscious attempt to fashion
a product to meet externally generated specifications. Consequently, ATA does not go as
far as the requirements in reference I. This is not to imply by any means that the con-
tractor has been deaf to suggestions by the prospective user.

The provisions in reference I are intended to eventuate in a very versatile tool
that will enable the quality assurance phase of software development for CMS-2 to make
definitive judgments. They set out requirements that apply to CMS-2Y and CMS-2Q as well

as to CMS-2M and go beyond the capabilities of any tool now in existence. However, they
are within the present state of the art. They do not intentionally favor the way of thinking
or the expertise of any particular contractor. A principal objective is to make each capa-
bility optional with the user of the tool so that testing may be specifically adapted to the
idiosyncrasies of each program presented.

The question of the higher-order language in which the validation tool is to be
written, as distinct from the language (CMS-2) of the programs subject to test, has been left
open. It is not sufficiently critical to warrant a special requirement, thereby possibly limiting
interest on the part of some potential contractors. Since most of the validation tools extant
are written in FORTRAN, the absence of such a stipulation will most likely mean, other
things being equal, that ANSI FORTRAN becomes the operative language. The use of
FORTRAN is alleged to give the tool portability. But the door is not to be closed on other
possibilities; the belief here is that the requirements should be concerned with the product
and not the means of production.

Tools for the assemblers for the AN/UYK-7, AN/UYK-20, or other processors
accepting CMS-2 have not been included. Although the wording of the requirements for a
validation tool for assembly-language programs would not be unlike that of reference 1, the
techniques for constructing a tool for machine-dependent software are sufficiently different
to preclude treatment of the former as a variant of the same task. The machine-dependent
case is to be regarded as the next step after tools for higher-order languages. In this connec-
tion, we once again call attention to the PET Program.

10.0 SOFTWARE OR HARDWARE?

Assuming that the decision has been made in principle to invest in validation tools
in order to enhance the effectiveness of quality assurance, the further course is fraught with
choices involving the usual tradeoffs. For example, the estimated usefulness of a particular
tool for the kinds of programs to be tested must be set against Its cost. Somewhat less
obvious is the option which recent technology offers: should the tool be implemented in
software, firmware, or hardware?

That this is a live option may not be apparent at once, for we have been conditioned
to perceive hardware and software as occupying separate realms, each with its own well-
defined fuirction. The distinction is becoming increasingly blurred, however, and changing

20

------ ---- -

cost ratios now make the allocation of function no longer something established a priori.
The decision today may not be the one for tomorrow. Although software is still to be
preferred for the majority of tools because the nature of their application demands flexibil-
ity, it is possible that specially designed hardware modules might be recommended under
certain conditions. For example, if the memory in the central processor available for
verification were not sufficient, an auxiliary device might be called for and, having gone
that far, one might find it reasonable to include in the circuitry of that device some of the
repetitive operations of the tool. Again, when one considers automating any part of the
verification process in order to utilize the man-machine dichotomy effectively, the ques-
tion of hardware should be a part of that consideration.

There also is an element of psychological value in being able to reassure the user that
the programs being turned over to him have been certified by machine. In the first place,
automation confers a kind of assurance that the process is well understood. In the second
place, hardware malfunction is usually due to random tailure of some physical component
which can be located with precision and then fixed by a mechanic or engineer. The unreli-
ability of software, in contrast, is often due to defects of design and consequently has a
built-in quality. There is a lingering suspicion that the fixing process may introduce errors
of its own. Therefore, when the validation is itself performed by software, it is not sur-
prising that less credibility may be attached to the result.

The ultimate goal is to supply the quality assurance investigator with a set of func-
tions from which he can construct verification procedures for any software that reaches his
desk. Some of these functions may be preprogrammed hardware units, and others software
routines. As microprogramming techniques give more control of the hardware elements to
the programmer, the opportunity for multiform solutions precisely tailored to individual
testing situations will increase.

This is the way the picture looks today. But the course of events often mocks the
seemingly most well-founded predictions. Even now on the horizon there is the expectation
of hardware that directly executes higher-order languages. Adoption of this type of archi-
tecture would place in much bolder relief the relation of the output program to the original
system requirements by eliminating the cumbersome apparatus of compilers, assemblers.
and complicated operating systems and would allow the quality assurance investigator to
render his endorsements with greatly increased authority,

j 21

11.0 REFERENCES

1. NOSC Technical Document 138, "Functional Description of a Validation Tool for
CMS-2 Software," by RN Goss, I February 1978

2. Department of Defense, DoD Manual 4120.17-M. "Automated Data System Docu-
mentation Standards Manual," pp 2-3 through 2-16, December 1972

3. NELC Technical Note 2949, "Software Verification: A State of the Art Report,"
12 May 1975 *

4. Prokop, Jan, ed, Computers in the Navy. Naval Institute Press, 1976

5. Fleet Combat Direction Systems Support Activity, San Diego. "Specification of
the Universal CMS-2 Programming Language," SS-2006, November 1973

6. Science Applications, Inc, San Francisco. Report RP-30, "Program Performance
Specification Document for Automatic Test Analyzer for CMS-2M (ATA/CMS-2M),
"by M Wilkes and MR Paige, 11 April 1977

7. Dijkstra, EW, "Programming Methodologies: Their Objectives and Their Nature."
In Structured Programming, D Bates, ed, pp 203-216, Infotech International
Limited, 1976

8. Myers, Glenford J, Software Reliability. John Wiley & Sons, 1976

9. Davis, Ruth M, "Evaluation of Computers and Computing." Science, vol 195, p 1100,

1977

10. Perlis, AJ, SIAM News. vol 10, no 3, p 5, June 1977

11. Harary, F, Graph Theory, p 10, Addison-Wesley Publishing Co, 1969

12. Science Applications, Inc, La Jolla, Report RP-I 7. "Discussion of Automated Verifi-
cation Systems: For Inclusion in SDL," May 1976

13. Estrin, G et al, "SNUPTER COMPUTER - A Computer in Instrumentation Automa-
tion." AFIRS Spring Joint Computer Conference, 1967

!I
NELC technical notes ae infonnal publications intended primarily for use within the Center.

22I~l

